Dlc1 interaction with non-muscle myosin heavy chain II-A (Myh9) and Rac1 activation
نویسندگان
چکیده
The Deleted in liver cancer 1 (Dlc1) gene codes for a Rho GTPase-activating protein that also acts as a tumour suppressor gene. Several studies have consistently found that overexpression leads to excessive cell elongation, cytoskeleton changes and subsequent cell death. However, none of these studies have been able to satisfactorily explain the Dlc1-induced cell morphological phenotypes and the function of the different Dlc1 isoforms. Therefore, we have studied the interacting proteins associated with the three major Dlc1 transcriptional isoforms using a mass spectrometric approach in Dlc1 overexpressing cells. We have found and validated novel interacting partners in constitutive Dlc1-expressing cells. Our study has shown that Dlc1 interacts with non-muscle myosin heavy chain II-A (Myh9), plectin and spectrin proteins in different multiprotein complexes. Overexpression of Dlc1 led to increased phosphorylation of Myh9 protein and activation of Rac1 GTPase. These data support a role for Dlc1 in induced cell elongation morphology and provide some molecular targets for further analysis of this phenotype.
منابع مشابه
Expression of non-muscle type myosin heavy polypeptide 9 (MYH9) in mammalian cells.
Myosin is a functional protein associated with cellular movement, cell division, muscle contraction and other functions. Members of the myosin super-family are distinguished from the myosin heavy chains that play crucial roles in cellular processes. Although there are many studies of myosin heavy chains in this family, there are fewer on non-muscle myosin heavy chains than of muscle myosin heav...
متن کاملT Lymphocyte Myosin IIA is Required for Maturation of the Immunological Synapse
The role of non-muscle myosin IIA (heavy chain encoded by the non-muscle myosin heavy chain 9 gene, Myh9) in immunological synapse formation is controversial. We have addressed the role of myosin IIA heavy chain protein (MYH9) in mouse T cells responding to MHC-peptide complexes and ICAM-1 in supported planar bilayers - a model for immunological synapse maturation. We found that reduction of MY...
متن کاملAn MYH9 human disease model in flies: site-directed mutagenesis of the Drosophila non-muscle myosin II results in hypomorphic alleles with dominant character.
We investigated whether or not human disease-causing, amino acid substitutions in MYH9 could cause dominant phenotypes when introduced into the sole non-muscle myosin II heavy chain in Drosophila melanogaster (zip/MyoII). We characterized in vivo the effects of four MYH9-like mutations in the myosin rod-R1171C, D1430N, D1847K and R1939X-which occur at highly conserved residues. These engineered...
متن کاملNon-muscle myosin heavy chain IIA and IIB interact and co-localize in living cells: relevance for MYH9-related disease.
Myosins of class II constitute part of a superfamily of several classes of proteins expressed in almost all eukaryotic cell types. Differences in the heavy chains produce three isoforms of class II non-muscle myosins (A, B and C), which are widely distributed in most tissues and thought to be components of the cell motor systems, although specific functional roles are largely unknown. In partic...
متن کاملMyosin regulatory light chains are required to maintain the stability of myosin II and cellular integrity.
Myosin II is an actin-binding protein composed of MHC (myosin heavy chain) IIs, RLCs (regulatory light chains) and ELCs (essential light chains). Myosin II expressed in non-muscle tissues plays a central role in cell adhesion, migration and division. The regulation of myosin II activity is known to involve the phosphorylation of RLCs, which increases the Mg2+-ATPase activity of MHC IIs. However...
متن کامل